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Abstract

We show that a large and realistic face data set can be boiitt frews photographs and their
associated captions. Our automatically constructed fate skt consists of 30,281 face images,
obtained by applying a face nder to approximately half alioil captioned news images. The
faces are labeled using image information from the photagsaand word information extracted
from the corresponding caption. This data set is more fialisan usual face recognition data
sets, because it contains faces captured “in the wild” uadeide range of positions, poses, facial
expressions, and illuminations. After faces are extra@tesh the images, and names with con-
text are extracted from the associated caption, our systss a clustering procedure to nd the
correspondence between faces and their associated nathegpicture-caption pairs.

The context in which a name appears in a caption provides fol@ies as to whether it is
depicted in the associated image. By incorporating simatanal language techniques, we are able
to improve our name assignment signi cantly. We use two ni@déword context, a naive Bayes
model and a maximum entropy model. Once our procedure is epve have an accurately
labeled set of faces, an appearance model for each indivithimcted, and a natural language
model that can produce accurate results on captions irtisola
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1 Introduction

This paper shows how to exploit the success of face detetdidnild a rich and reasonably accurate
collection of labeled faces. The input is a collection of sg@hotographs with captions. Face detection
extracts faces from each image while natural language psieg nds proper names in the associated
caption. For each photo/caption paimiata item the remaining step, to solve the assignment problem
between names and faces, is the central part of this article.

We attack the assignment problem in two ways. First we devatoiterative method for determin-
ing correspondences for a large number of data items, aldagéiar line of reasoning. If we knew
an appearance model for the faces associated with each tltenending a correspondence would be
straightforward; similarly if we knew a correspondencertlestimating an appearance model for the
faces associated with each name would be straightforwdrds& observations lead to natural iterative
algorithms. Second we show that there are contextual layjgyoaes that suggest particular names in a
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President George W. Bush makes a
statement in the Rose Garden while Sec-
retary of Defense Donald Rumsfeld
looks on, July 23, 2003. Rumsfeld said
the United States would release graphic
photographs of the dead sonsSzddam
Hussein to prove they were killed by
American troops. Photo by Larry Down-
ing/Reuters

British director Sam Mendesand his
partner actresXate Winslet arrive at
the London premiere of ‘The Road to
Perdition’, September 18, 2002. The
Ims stars Tom Hanks as a Chicago hit
man who has a separate family life and |
co-starsPaul Newman and Jude Law.
REUTERS/Dan Chung

Incumbent California GovGray Davis
(news - web sites) leads Republican
challengemBill Simon by 10 percentage
points — although 17 percent of voters are
still undecided, according to a poll re-
leased October 22, 2002 by the Public
Policy Institute of California. Davis is
shown speaking to reporters after his de-
bate with Simon in Los Angeles, on Oct.
7. (Jim Ruymen/Reuters)

World number onelLleyton Hewitt of
Australia hits a return tdlicolas Massu

of Chile at the Japan Open tennis cham-
pionships in Tokyo October 3, 2002.
REUTERS/Eriko Sugita

German supermodeClaudia Schiffer
gave birth to a baby boy by Cae-
sarian section January 30, 2003, her
spokeswoman said. The baby is the
rst child for both Schiffer, 32, and her
husband, British Im produceMatthew
Vaughn, who was at her side for the
birth. Schiffer is seen on the German
television show 'Bet It..?!" (‘Wetten
Dass...?!") in Braunschweig, on January
26, 2002. (Alexandra Winkler/Reuters)

US President George W. Bush (L)
makes remarks while Secretary $fate
Colin Powell (R) listens before signing
the US Leadership Against HIV /AIDS
, Tuberculosis and Malaria Act of 2003
at the Department of State in Washing-
ton, DC. The ve-year plan is designed
to help prevent and treat AIDS, espe-
cially in more than a dozen African and
Caribbean nations(AFP/Luke Frazza)

Figure 1:Some typical news photographs with associated captions dwar data set. Notice that mul-
tiple faces may appear in a single picture and that multigdenes may occur in a particular caption.
Our task is to detect faces in these pictures, detect nantbe iassociated captions and then correctly
label the faces with names (or “NULL” if the correct name dawd appear in the caption). The output
of our system on these images appears in Figure 5.

caption do not refer to a pictured face. These cues are léame exploited in the iterative algorithms,
improving the resulting correspondences.

1.1 Previous work

There are many data sets of images with associated wordsaites include: collections of museum
material [3]; the Corel collection of images ([4, 22, 17]damumerous others); any video with sound
or closed captioning [57, 56, 71]; images collected fromwtad with their enclosing web pages [11];
or captioned news images [70]. It is a remarkable fact thmthése collections, pictures and their
associated annotations are complementary. The liter&gwery extensive, and we can mention only
the most relevant papers here. For a more complete reviewgfge readers to [19], which has 120
references. There are three natural activities: One miggh to cluster images, to search for images
using keywords, or to attach keywords to new images. Tylyicalodels intended for one purpose can
produce results for others.

Search: Belongieet al. demonstrate examples of joint image-keyword searches [16%hiet
al. show that one can identify pictures that illustrate a storysearching annotated images for those
with relevant keywords, then ranking the pool of images basesimilarity of appearance [36].

Clustering: Barnardet al. cluster Corel images and their keywords jointly to produde@vsable
representation [4]; the clustering method is due to Hofmeamh Puzicha [31]. Barnaret al. show that
this form of clustering can produce a useful, browsablegs@ntation of a large collection of annotated



art in digital form [3].

Attaching keywords to images: Clustering methods methods can typically be used to predict
keywords from images, and accuracy at keyword predictiamsed as one test of such methods (see
also [6]). There are two varieties of the prediction taskedicting words associated with an image
(auto-annotatioh and predicting words associated with particular imagecstres. Maron and Ratan
attach keywords to images usingultiple-instance learningd2]. Multiple-instance learning is a gen-
eral strategy to build classi ers from “bags” of labeled exales. Typically, one knows only that a bag
contains or does not contain a positive example, but notlwki@ample is positive. Methods attempt
to nd small regions in the feature space that appear in aflifpe bags and no negative bags; one
can visualize these methods either as a form of smoothingg2R3 tting an SVM [1, 65], or using
geometric reasoning [20]. Comparisons between methodsaapp [51]. Chen and Wang describe a
variant multiple-instance learning method, and use it st keywords from regions [17]. Duygulu
et al. use explicit correspondence reasoning to associate kegweith image regions [22], using a
statistical translation model from [15]. Blei and Jordar @svariant of latent Dirichlet allocation to
predict words corresponding to particular image regionannauto-annotation task [14]. Barnast
al. demonstrate and compare a wide variety of methods to prkeljetords, including several strate-
gies for reasoning about correspondence directly [5]. di'Afang used 2-dimensional multi-resolution
hidden markov models on categorized images to train modgplesenting a set of concepts [39]. They
then used these concepts for automatic linguistic indegingjictures. Jeoret al. demonstrate anno-
tation and retrieval with a cross-media relevance mode]. [B&vrenkoet al. used continuous space
relevance models to predict the probability of generatingoad given image regions for automatic
image annotation and retrieval [38].

Other activities: Relations between text and images appear to be deep andecorBglrnard and
Johnson show one can disambiguate the senses of annotatidg using image information [7]. Berg
and Forsyth show that one can nd images of complex categgtimonkey”; “penguin”) by searching
for images with distinctive words nearby and containingidative image structures [11]. Yanai and
Barnard use region entropy to identify words that have ghifdrwardly observed visual properties
(“pink” does, “affectionate” does not) [73]. All this workds tended to emphasize general image
constructs (such as regions), but one might instead usetdeteand link the detector responses with
words. Faces are of particular interest.

1.1.1 Face Recognition

We review only important points, referring readers to Zletal.for a comprehensive general survey of
the area [85]. Further reviews appear in [29, 78, 49]. Eadykwses nearest neighbor classi ers based
on pixel values, typically dimensionality reduced usingpipal component analysis (PCA) [61, 68].
Linear discriminant methods offer an improvement in parfance [8]. More recently, it has been
shown that models based on 3D structure, lighting, and cairégppearance [13, 49] or appearance
based methods that explicitly model pose [28] give betteogeaition accuracy, but can be somewhat
hard to t for arbitrary faces.

Face recognition is known to be dif cult, and applicatioravi failed publicly [58]. Philips and
Newton show that the performance of a face recognition syste a data set can largely be predicted
by the performance of a baseline algorithm, such as prihcipaponent analysis, on the same data
set [48]. Since recognition systems work well on currenefdata sets, but poorly in practice, this
suggests that the data sets currently used are not repaigerdf real world settings. Because current
data sets were captured in the lab, they may lack importaetiqinena that occur in real face images.



To solve face recognition, systems will have to deal welhvaitdata set that is more realistic, with wide
variations in color, lighting, expression, hairstyle ahapsed time.

1.1.2 Linking Faces with Other Data

It appears to be considerably simpler to choose one of a fevesdo go with a face than it is to identify
the face. This means one might be able to link faces with namresal data sets quite successfully. Very
good face detectors are now available (important samplésighuge literature include [50, 52, 53,
54, 55, 64, 33, 69, 78, 59, 45]); we use the detector of [45f)erApts to link names and faces appear
quite early in the literature. Govindaragi al. describe a method that nds faces using an edge curve
criterion, and then links faces to names in captions by miagoabout explicit relational information

in the caption (they give the example of the caption “Cardid&onnor (center), George Bush (left)
and Michael Dukakis...”) [27]. There is a description of ap&nded version of this system, which uses
language semantics even more aggressively (for examm@esystem possesses the knowledge that a
portrait is a face surrounded by a frame, p. 53), in [63]. Zhahal. show that a text based search
for an image of a named individual is signi cantly improved testing to see whether returned images
contain faces [83]. Naamagt al. show that labels used frequently for “nearby” images caistthe
labels that can be used for the current face image [46].

Satoh and Kanade work with video and a transcription [57]eyTtepresent faces using principal
components, identify named entities in the transcript, tee build a smoothed association between
principal component faces and names that appear nearbg tretfiscript. Similar faces appearing near
two instances of a name reinforce the association functidfeérent names appearing near similar faces
weaken it. The system operates on some 320 face instankes {tam some 4.5 hours of video) and
251 name instances, and reports names strongly associdted given face. Satoht al. describe a
variant of this system, which is also capable of readingioaptoverlaid on video frames; these prove to
be a strong cue to the identity of a face [56]. The method isparable with multiple-instance learning
methods (above). Yang and Hauptmann describe a systemrafaoinlg such association functions [75].

Houghton works with video, transcriptions, automaticaflierpreted video captions and web pages
(from news and other sources), to build a database of narced fa2]. The question of correspondence
is not addressed; the data appears to contain only singéésfagle name pairs. Houghton's system
will produce an N-best list of names for query faces.

An important nuisance in news video are anchor persons, evfames appear often and are often
associated with numerous names. Sehgl.detect and remove anchor persons and then use a form of
multiple-instance learning to build models of two well-kmoindividuals from video data [62].

Yanget al. compare several forms of multiple-instance learning faaciting one of a set of possible
labels to each face image [76]. In their problem, each imageahset of possible name labels, and one
knows whether the right label appears in that set (there 34esBch images) or not (242). There are
approximately 4.7 available labels for each face image. Jdq@er compares four multiple-instance
algorithms, each in two variants (one either averages ayeespondences between a face and labels,
or chooses the best correspondence) and each with two typesning data (only positive bags vs.
all bags), and two supervised methods. Multiple-instane¢hods label between 44% and 60% of test
images correctly and supervised methods label between 8t%626 of test images correctly.

Methods to label faces in consumer images are described®jr8]3. In this problem, the user acts
as an oracle — so there is no correspondence component —eéordble must not be queried too
often.



Doctor Nikola shows a fork that was removed from an

Israeli WOmar! who SWa”OWed_it Wh||e try|ng tO catch aPresident George W. Bush waves as he leaves
bug that flew in to her mouth, in Poriah Hospital White House for a day trip to North Carolina, Ju
northern Israel July 10, 2003. Doctors performed 25, 2002. A White House spokesman said that |
emergency surgery and removed the fork. (Reuters) would be compelled to veto Senate legislation
creating a new department of homeland security
unless changes are made. (Kevin Lamarque/Re

Figure 2:In our initial set of photo-caption pairs, some individudike President Bustright), appear
frequently. Most people, however, like Dr. Nikolaf(), appear only a few times or in only one pic-
ture. This distribution re ects what we expect from real dggtions. For example, in airport security
cameras, a few people, (e.g. airline staff) might be seemnpfiut the majority of people would appear
infrequently. Studying how recognition systems perforgeuthese circumstances and providing data
sets with these features is necessary for producing raifdie recognition systems.

Fitzgibbon and Zisserman automatically discover cashlistin video using af ne-invariant clus-
tering methods on detected faces and are robust to changighting, viewpoint and pose [24]. More
recently, Arandjelovic and Zisserman have extended thikwmsuppress effects of background sur-
rounding the face, re ne registration and allow for partaiclusion and expression change [2].

Our efforts differ from the work surveyed above in three intpat points. First, our typical data
item consists of representations of several feaed of several names, and we must identify what, if
any, correspondences are appropriate. Second, we reaglizitgxabout correspondence. This allows
us to build discriminative models that can identify langeiagies that are helpful. Third, we operate
at a much larger scale (approximately 30,000 face imagdsizhacan help to make correspondence
reasoning more powerful.

1.2 Overview

We have collected a very large data set of captioned newsaisn@gction 2). We describe our construc-
tion of a face dictionary as a sequence of three steps. Riestletect names in captions using an open
source named entity recognizer [18]. Next, we detect antesgmt faces, as described in section 3.3.
Finally, we associate names with faces, using either aaringt method (section 4) or an enhanced
method that analyzes text cues (section 5).

Our goal is more restricted than general face recogniticthah we need only distinguish between
a small number of names in the corresponding caption. Thepeaa to be signi cant bene ts in
explicit correspondence reasoning, and we report resatsdme-face association that are a signi cant
improvement on those of Yarg al.[76] described above.



The result is a labeled data set of faces, captured “in the'Wilhis data set displays a rich variety
of phenomena found in real world face recognition tasks —igignt variations in color, hairstyle,
expression, etc. Equally interesting is that it doescontain large numbers of faces in highly unusual
and seldom seen poses, such as upside down. Rather thamduldiatabase of face images by
choosing arbitrary ranges of pose, lighting, expressioth smon, we simply let the properties of a
“natural” data source determine these parameters. We/edhat in the long run, developing detectors,
recognizers, and other computer vision tools around sudchtabdse will produce programs that work
better in realistic everyday settings.

While perfect automatic labeling is not yet possible, tlatacset has already proven useful, because
it is large, because it contains challenging phenomenabanduse correcting labels for a subset is
relatively straightforward. For example, Ozkan and Duygj47] used the most frequent 23 people
in the database (each of whom occurred over 200 times) irtiaddi clustering experiments. The
assumption made in that work is that the clusters were mane B0 percent correctly labeled, so the
current data set easily met this requirement.

The database was also used recently in work by Ferehak on face recognition [23, 34]. In this
case, a subset of images with correct labels were used fomigeand testing in a supervised learning
framework. A simple interface was used in which databasengies could quickly be manually clas-
si ed as correct or incorrect. As a result, it took just a ctaupf hours to produce a database of more
than 1000 correctly labeled set of “faces in the wild” forttiark.

2 News Data Set

We have collected a data set consisting of approximatelfy hatillion news pictures and captions
from Yahoo News over a period of roughly two years. Using Maliceyk's face detector [45], we
extract faces from these images. Using Cunningleaal’'s open source named entity recognizer [18],
we detect proper names in each of the associated captions. givkes us a set of faces and names
resulting from each captioned picture. In each picturetioappair, There may be several faces and
several names. Furthermore, some faces may not correspa/thame, and some names may not
correspond to any face. Our task is to assign one of thesesnamaull (unnamed) to each detected
face.
This collection differs from typical face recognition datats in a number of important ways:

Pose, expression and illuminatiorvary widely. We often encounter the same face illuminated
with markedly different colored light and in a very broad gerof expressions. The parameters of
the camera or post-processing add additional variabiityné coloring of the photos. Spectacles
and mustaches are common (Figure 5.4). There are wigs, Byaddaces on posters, differences
in resolution and identikit pictures (e.g. Figure 5.4). @wften there are multiple copies of the
same picture (this is due to the way news pictures are prdpeather than a collecting problem)
or multiple pictures of the same individual in similar comugations. Finally, many individuals
are tracked across time, adding an additional source dibviity that has been shown to hamper
face recognition substantially [29].

Name frequencieshave the long tails that occur in natural language probleWis.expect that
face images follow roughly the same distribution. We havedneds to thousands of images of a
few individuals (e.gPresident Bush) and a large number of individuals who appear only a few
times or in only one picture (e.g. Figure 2). One expects apalications to have this property.
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Figure 3: The face detector can detect faces in a range of orientatiasshetop row shows. Before
clustering the face images we rectify them to a canonicak pagtom row. The faces are recti ed
using a set of SVM's trained to detect feature points on each.f Using gradient descent on SVM
outputs, the best af ne transformation is found to map detdéeature points to canonical locations.
Final recti cation scores for each of these faces are sha&nter (where larger scores indicate better
performance). This means that incorrect detections, hikerightmost image can be discarded because
of their poor recti cation scores.

For example, in airport security cameras a few people, ggcguards, or airline staff might
be seen often, but the majority of people would appear inkeetly. Studying how recognition
systems perform under these circumstances is important.

The sheewolume of available data is extraordinary. We have sharply reddicechumber of face
images we deal with by using a face detector that is biasemial faces and by requiring that
faces be large and rectify properly. Even so, we have a dathateis comparable to, or larger
than, the biggest available lab sets and is much richer iteobn Computing kernel PCA and
linear discriminants for a set this size requires specigiigues (section 3.3.1).

One important dif culty is that our face detector cannotetdtiateral or three-quarter views. This is
a general dif culty with face detectors (all current facaestors either can detect only frontal views, or
are signi cantly less reliable for views that are not frolntz8]), but it means that our data set contains
only frontal or near-frontal views. We speculate that mdthtike ours could be made to work to
produce a similar data set if one had a face detector that sgeainsensitive, but do not know what
performance penalty there would be. For extremely larga dats, we expect that there may be little
penalty. This is because, in a suf ciently large data setpvight reasonably expect to see many aspects
of each individual in contexts where there is little ambiguFor smaller data sets the problem would
be much more challenging and would require more sophisticegpresentations.

3 Finding and Representing Faces

To deal with the large quantity of data, we establish a pigethat takes in images and outputs a
description based on a rough alignment of facial featuresbs8quently, we compare faces in this
domain.

Our pipeline is as follows. For each news picture we,

1. Detect faces in the images (Section 3.1). We con ne ouvities to large, reliably detected
faces, of which 44,773 are found.



2. Rectify those faces to a canonical pose (Section 3.2).i¥¢aud faces where the recti er cannot
nd good base points, resulting in 34,623 faces.

3. ldentify faces with at least one proper name identi edhia associated caption, leaving 30, 281
faces.

4. Transform this set of faces into a representation sutédslthe assignment task (Section 3.3).

3.1 Face detection

For face detection, we use Mikolajczyk's implementatioB][df the face detector described by Schnei-
derman and Kanade [59]. To build this face detector, a tmgiset of face and non-face images is used
to determine the probability of a new image being a face. Haelge in the training set is decomposed

into a set of wavelet coef cients which are histogrammedtst each bin corresponds to a distinct set
of coef cients; a probability model then determines whettiee image is a face image or a non-face
image. We threshold on face size (86x86 pixels or larger) gatdction score to obtain 44,773 face

images.

3.2 Rectication

The next stage in our pipeline is an alignment step. Whiledibiector detects only frontal or near
frontal faces, these faces are still subject to small outlafg rotations and signi cant in-plane ro-
tations and scales. We will use an appearance feature toarenfgce images, and so would like to
reduce within-class variance and increase between-ctatmee. Within-class variance in appearance
features can be signi cantly reduced by moving each facegeni@ a canonical frame (where eyes,
nose, mouth, etc. lie close to canonical locations), a plaeewe callrecti cation. We will rectify

by using a novel procedure to identify a set of base pointbénnage, then apply a full plane af ne
transformation to move these base points to canonicalitotat Images where base points can not be
identi ed suf ciently well will be rejected.

Notice that recti cation could suppress features that hdgntify individuals. For example, some
individuals have larger faces than others do, and recticcesuppresses this property, thereby reducing
between-class variance. In this application, the supjmess within-class variance obtained by rec-
tifying faces seems to outweigh the loss of between clasan@e. We speculate that in a suf ciently
large data set, recti cation may be unnecessary, becausavonld have enough examples of any indi-
vidual's face in any view; we have no reason to believe ouadeat is anywhere large enough for this

to apply.

3.2.1 Identifying Base Point Locations

We train ve support vector machines (SVMs) as feature detscfor several features on the face
(corners of the left and right eyes, corners of the mouth, thedtiip of the nose) using a training set
consisting of 150 hand clicked faces. We use the geometricfhture of Berg et al [9, 10] applied to
gray-scale patches as the features for our SVM.

The geometric blur descriptor rst produces sparse chanifreim the grey scale image. In this
case, these are half-wave recti ed oriented edge lter ceses at three orientations, yielding six chan-
nels. Each channel is blurred by a spatially varying Gaussigh a standard deviation proportional
to the distance to the feature center. The descriptors are ghb-sampled and normalized. Initially



image patches were used as input to the feature detectdrsgfdacing patches with the geometric
blurred version of the patches produced signi cant gainseicti cation accuracy. Using geometric
blur features instead of raw image patches was a necesspytasimaking our recti cation system
effective.

We compute the output value for each SVM at each point in thieeeimage and multiply with a
weak prior on location for each feature. This produces a Bateofeature maps, one for each base
point. The initial location of each base point is obtainedngsmaximal point of each map.

3.2.2 Computing the Recti cation

We compute an initial af ne map from canonical feature logas to the initial locations for the base
points using least squares. However, accepting a smaledserin the SVM response for one base
point may be rewarded by a large increase in the responsenfiher. We therefore maximize the
sum of SVM responses at mapped canonical feature locatiging gradient descent, with the initial
af ne map as a start point. The image is then recti ed using tbsulting map, and the value of the
optimization problem is used as a score of the recti catidre value indicates how successful we
have been at nding base points; a small score suggestshiia s no set of points in the image that
(a) looks like the relevant face features and (b) lies nedhaoresult of an af ne map applied to the
canonical points.

We lIter our data set by removing images with poor recti aati scores, leaving 34,623 face im-
ages. This tends to remove the face detectors false pas{firgure 2; center number — larger numbers
indicate a better score). Each face is then automaticadlgped to a region surrounding the eyes, nose
and mouth in the canonical frame, to eliminate effects okgemund on recognition. The RGB pixel
values from each cropped face are concatenated into a \eutbused as a base representation from
here on.

3.3 Face Representation

We wish to represent faces appearances as vectors in a space, W one uses Euclidean distance
between vectors, examples of the same face are close togeith@xamples of different faces are far
apart. We must identify components of the base representtitat tend to be similar for all faces, and
discard them (or, better, keep components of the base igarittat vary strongly over the data set). Of
these, we must keep those that tend to co-vary with identity.

We use kernel principal component analysis (KPCA,; see [@0ilentify components of the base
representation that vary strongly over the data set. Thaétrissa vector of kernel principal components.
We apply linear discriminant analysis (LDA; see, for exaenfd0]) to these vectors, to obtain a feature
vector. Kernel principal component analysis is a standagthod of dimension reduction that has been
shown to be effective for face recognition (see, for exanile 37, 77, 74, 41, 84]; Yang compares
with principal components and with linear discriminant lgs&s and shows a strong advantage for
kPCA combined with LDA [79]).

3.3.1 Kernel Principal Components and the Nystdm Approximation
Kernel Principal Components Analysisrequires the following steps:
Compute a kernel matrix, K, whetejj = K (imagg;image) is the value of a kernel function

comparing imageand imagg. We use a Gaussian kernel with sigma set to produce reagonabl
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(rear) smiles while celebrating with compatriots their
victory in obtaining the 2010 Winter Olympics bid on late
July 2, 2003 in Prague. Vancouver won with 56 votes
against 53 votes for Pyeonchang in the second round of All possible name/face assignments
balloting at an IOC gathering in Prague. REUTERS/Petr

Josek

Null Null

Figure 4:To assign faces to names, we evaluate all possible assigsmigiaces to names and choose
either the maximum likelihood assignment or form an expeassignment. Here we show a typical
data item [eft), with its detected faces and namesifter). The set of possible correspondences for
this data item are shown aight. This set is constrained by the fact that each face can have at
most one hame assigned to it and each nhame can have at mosaanadsigned, but any face or
name can be assigned to Null. Our hamed entity recognizeasimaally detects phrases like “Winter
Olympics” which do not correspond to actual people. Thesaeemare assigned low probability under
our language model, making their assignment unlikely. Edvhies between computing the expected
value of the set of possible face-name correspondences aiating the face clusters and language
model. Unusually, we can afford to compute all possible-famme correspondences since the number
of cases is small. For this item, we correctly choose the isthing “F1 to Null”, and “F2 to N1”.

kernel values.

Center the kernel matrix in feature space by subtractingpedfrage row, average column and
adding on average element values.

Compute an eigendecomposition of K, and project onto thmatized eigenvectors of K.

Writing N for the number of data items, we have l[d®N kernel matrix. In our caseN = 34;623

and we cannot expect to evaluate every entry of the matrix. dd/@ot use incomplete Cholesky
decomposition, which can give a bound on the approximatioor §26], because that would require
accessing all images for each column computation. Howélverkernel matrix must have relatively
low column rank; if it did not, there would be generalizatioroblems, because it would be dif cult to
predict a column from the other columns (see [72]). This gstgusing the Nystrom approximation
method, which will be accurate if the matrix does have lowiomh rank, and which allows the images
to be accessed only once in a single batch rather than oneadbrcolumn computation (cf. [72, 25]).
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The Nystrom method partitions the kernel matrix as:

A B

“= BT C

withA2 R" " B 2 RN M ngndCc 2 RN M (N n) To obtainA andB by selecting a base set
B of the set of imagek (in our case, 1000 images selected uniformly and at rand®hgn
Ayw = K (imageg,;image)) for image, 2 B, imageg, 2 B;
whereK ( ; ) is the kernel function, and
Bim = K (imagg;image, ) forimagg 2 B, image, 21 :
Now Nystrom's method approximatés with the matrix obtained by replacirgwith ¢ = BTA 1B,
elding =~ B
y g - BT é

Centering: we center as usual in kPCA, by writindy for an Nx 1 vector of ones, and then
computing
K=K i1NK‘ iK‘lN + ileN:
N N N 2

Note that this is simpli ed by the fact tha€ is symmetric, and by observing that

K‘ 1 - Aln + B 1N n
N BT1,+ BTA 1B1y o
It is convenient to writdk = I‘fT c where the dimensions & are those oA, etc.

Approximate eigenvectors:LetA“% be the square root &, andS = A+ A BBTA 3. Diag-
onalizeS asS = Us sUJ. ThenK is diagonalized by

A 1 i
V = B_T A 2 US s 2;
Then we havek = V VT andVTV = |. Given this decomposition d& we proceed as usual for

kPCA, by normalizing the eigenvecto¥s and projectingk” onto the normalized eigenvectors. This
gives a dimensionality reduction of our images that makeslikcrimination task easier.

Quality of approximation: It is dif cult to verify that the approximation is accuraterdctly,
because we are unable to foKn let alone evaluate its eigenvectors. However, we have swdence
the approximation is sound. First, the eigenvalue& ¢énd to fall off quickly, despite the fact that the
elements oB are chosen at random. This suggests thatloes, indeed, have low rank. Second, in
practice the representation is quite effective.

3.3.2 LDA

Thei'th face image is now represented by its vector of kernel@pal componenty;. Assume that
the identity of each face is known. Then we can compute lidesriminants for these vectors in the
usual way [30], writingm for the number of classe&; for the set of elements in classN, for the
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number of samples in class | for the mean of clasg and computing the within class varianéé
and between class varianBeas

X X

W = (X i)(Xj )T
i=1 x;2C;
xn

B = Ni( i )i )™
i=1

LDA computes the projectiow that maximizes the ratio,

_ w'BwW
Wopt = aTgM&BXw oy

by solving the generalized eigenvalue problem:

Bw= W w:

We obtain a set of projection directions, which we stack entoatrix

2 wl 3

w=4:.:5:

Wy

The nal representation for théth face is nowf; = Wv;. Notice that, in this coordinate system, the
Mahalanobis distance to a class mean is given by the Eualidistance.

Of course, not all of our images are labeled. However, we de hasubset of data where there was

a single face detected in an image with a single name in thocapVe use these images to compute

linear discriminants in the rst instance. Later in the pess, we will have labels for each item, and

can re-estimate linear discriminants.

4 Name Assignment by Simple Clustering

We have a set df“bags”, each containing faces andN names. We wish to identify correspondences
between names and faces within each bag. Each name in a blgloag to at most one face. If we had
a cluster of face vectors for each individual, we could atecthe name whose cluster center is closest
to each face (this would also require allocating each nameamte, and not naming a face if all cluster
centers are too far away). With the allocations, we couldstmate cluster centers, and so on. This
method is analogous to k-means clustering (see the texthoodunt in [21], for example). There are
advantages to generalizing the method with a probabilieticlel: we can perform soft allocations of
names to faces; we will be able to bene t from text featuresiien 5); and it is easier to reason explic-
itly about both faces without names and exclusion betweemesa To build a probabilistic model, we
regard correspondence as a hidden variable, build a gereerabdel for a bag given correspondence,
obtain a complete data log-likelihood, and then estimaté tie expectation-maximization (EM) al-
gorithm. A variant estimation procedure, where one chodsesbest correspondence rather than a
weighted average of correspondences, performs betteastipe.

12



4.1 A Generative Model for Bags

To obtain a bag of data, we rst draw the number of faBefom a distributionP (F) and the number

of namesN from a distributionP (N). We then generatll namem;, each with a context;, as 11D
samples oP (n;c). The context is of no interest at this point, but we will use ithea below. In turn,
each name and its context generates a binary varjabtared, which determines whether the name
will generate a face in the image. For each name for whictured = 1 (the total number of such
names cannot exceed), a facef; is generated from the conditional densRyfjn;; ), where are
parameters of this distribution which will need to be estimla The remaining faces are generated as
IID samples from a distributioR (f ). We cannot observe which name generated which face, and must
encode this information with a hidden variable.

For the moment, assume that we know a correspondence froresntanfiaces for a particular bag.
This is encoded as a partition of the nam&sn the bag into two setd) being the names that generate
faces andJ being the names that do not, and a mgmhich takes a name index to a face index

( ). For convenience, we write the set of faces in the bag .ashe likelihood of the bag is then
1 0 1 I
Y ' Y Y '
L(; )= P(N)P(F) P(f()in;) @ P(f )A P(ny;cu)
2D 2F (D) u2n

Notice thatpictured does not appear explicitly here (it is implicit in the formtbg likelihood).

Implementation details: F andN typically vary between one and ve, and we see no advantage in
regarding larger bags as different from smaller ones. Weethee regard® (N ) andP (F) as uniform
over the range of those variables, and so they play no paheirestimation. We use a uniform prior
over names and contextB (ny; ¢,)), too, and they too play no further part in the estimation. réégard
P(f ) as uniform; we will use only its logarithm, which will be a cgiant parameter. Our choice of
coordinate system means we can regafdjn; ) as a normal distribution, with mear, — which
gives one cluster center per name — and covariarfde We choose a sigma to produce reasonable
values ( = 0:1), but do not t this explicitly.

4.2 Estimation with EM

Of course, the correspondence between faces and namesi@xmkHowever, for each bag there is a
small set of possible correspondences. We construct acaitwdivariable (m; n), where

1 if the n'th correspondence for the'th data item actually occurs

(m;n) = 0 otherwise

This indicator variable is unknown, but we will estimate if. it were known, we could write the
log-likelihood of the data set as
0 1

X X
@ (m;n)logL(; n)A:

m2data n2correspondences for the'th data item
We now estimate and (m;n) with EM. It is natural to regard this as a soft-count procedukt the
i'th iteration, we rst estimate the expected value of th{en; n) conditioned on the previous parameter

estimate (), then estimate(*) by substituting these expected values in equation 4.2 axamizng.
As this is a straightforward case, we omit detailed calooiest.
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3 President George W. Bush makes a «‘ World number onelLleyton Hewitt of

e A statement in the Rose Garden while Sec- - Australia hits a return tdNicolas Massu

e retary of Defense Donald Rumsfeld of Chile at the Japan Open tennis cham-
looks on, July 23, 2003. Rumsfeld said | pionships in Tokyo October 3, 2002.
the United States would release graphic — - REUTERS/Eriko Sugita

Donald photographs of the dead sonsS#ddam
Rumsfeld Hussein to prove they were killed by - S—
= American troops. Photo by Larry Down-

ing/Reuters

German supermodeClaudia Schiffer
gave birth to a baby boy by Cae-
sarian section January 30, 2003, her
spokeswoman said. The baby is the
rst child for both Schiffer, 32, and her
husband, British Im produceMatthew
Vaughn, who was at her side for the
birth. Schiffer is seen on the German
television show 'Bet It..?!" (‘Wetten
Dass...?!") in Braunschweig, on January
26, 2002. (Alexandra Winkler/Reuters)

British director Sam Mendesand his
partner actresXate Winslet arrive at
the London premiere of ‘The Road to
Perdition’, September 18, 2002. The
Ims stars Tom Hanks as a Chicago hit
man who has a separate family life and Wf{m\
co-starsPaul Newman and Jude Law. X
REUTERS/Dan Chung

Incumbent California GovGray Davis
(news - web sites) leads Republican
challengemBill Simon by 10 percentage
points — although 17 percent of voters are
still undecided, according to a poll re-
leased October 22, 2002 by the Public
Policy Institute of California. Davis is ton, DC. The ve-year plan is designed
shown speaking to reporters after his de- to help prevent and treat AIDS, espe-
bate with Simon in Los Angeles, on Oct. cially in more than a dozen African and
7. (Jim Ruymen/Reuters) m Caribbean nations(AFP/Luke Frazza)

US President George W. Bush (L)
makes remarks while Secretary &fate
Colin Powell (R) listens before signing
the US Leadership Against HIV /AIDS
, Tuberculosis and Malaria Act of 2003
at the Department of State in Washing-

Figure 5: Given an input image and an associated caption (images abodecaptions to the right
of each image), our system automatically detects faceddwbixes) in the image and possible name
strings (bold). We use a clustering procedure to build medélappearance for each name and then
automatically label each of the detected faces with a namoaeéfexists. These automatic labels are
shown in boxes below the faces. Multiple faces may be ddtantEmultiple names may be extracted,
meaning we must determine who is who (e.g., the pictu@anfdia Schiffey.

4.3 Estimation with Maximal Assignment

If the model is an accurate re ection of the data, then it isurel to average out hidden variables
(rather than, say, simply maximizing over them), and doinglsould give better estimates (e.g. [44]).
However, the procedure is regularly outperformed in vigiomblems by the simpler — and statistically
non-optimal — procedure of maximizing over the hidden Malea (for example, randomized search
for correspondences in fundamental matrix estimation §&). We conjecture that this is because
local models — in our casgy(fjn; ) — may exaggerate the probability of large errors, and so the
expectation step could weight poor correspondences todljea
Maximal assignment iterates two steps:

Set the (m; n) corresponding to the maximum likelihood assignment to 1ahdthers to 0.

Maximize the parameteiB(f jn; ¢) using counts.

In practice, maximal assignment leads to better name predsc(section 6).

5 Clustering with Context Understanding

Up to this point, we've treated the caption as a bag of wordswéVer, the context of the caption is
important. For example, consider the caption:
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before - CEO Summit before - U.S. Joint  before - Angelina Jolie  before - Ric Pipino before - U.S. Open before - James Bond
after - Martha Stewart after - Null after - Jon Voight after - Heidi Klum  after - David Nalbandian after - Pierce Brosn:

"l

before - James Ivory
after - Naomi Watts

before - U.S. House before - Julia Vakulenko before - Vice Presidentbefore - Marcel Avram  before - al Qaeda
after - Andrew Fastow  after - Jennifer Capriati Dick Cheney after - Michael Jackson  after - Null
after - President George W.

Figure 6: This gure shows some example pictures with names assigsieg our raw clustering
procedure(before) and assigned using a correspondence procedure with incatpd language model
(after). Our named entity recognizer sometimes detects incori@ttes like “CEO Summit”, but the
language model assigns low probabilities to these namesngakeir assignment unlikely. When
multiple names are detected like “Julia Vakulenko” and “défier Capriati”, the probabilities for each
name depend on their context. The caption for this pictuaglse’American Jennifer Capriati returns
the ball to her Ukrainian opponent Julia Vakulenko in Parigidg..” “Jennifer Capriati” is assigned
to the face given the language model because the contexich sle appears (beginning of the caption
followed by a present tense verb) is more likely to be picttinan that of “Jennifer Capriati” (middle
of the caption followed by a preposition). For pictures sashthe one above (“al Qaeda” to “Null”)
where the individual is not named, the language model ctgressigns “Null” to the face. As table 1
shows, incorporating a language model improves our facstels signi cantly.

Sahar Aziz, left, a law student at the University of Texasndbeahe business card iden-
tifying Department of the Army special agent Jason D. Trdesbne of her attorneys,
Bill Allison, right, during a news conference on Friday, FelB, 2004, in Austin, Texas.
... In the background is Jim Harrington, director of the TexawiCRRights Project. (AP
Photo/Harry Cabluck)

From the caption alone, we expect to see Sahar Aziz, Bilsatiand Jim Harrington in the picture,
and we do not expect to see Jason D. Treesh. This suggestslmguage model can exclude some
names from consideration. In this section, we show how ttdlatich a model into our framework
(section 5.1); describe two plausible such models (se&i@ and describe two estimation methods
(sections 5.3 and 5.4).

5.1 A Generative Model for Bags

Many of the caption phenomena that suggest a person is praserelatively simple, and a simple
language model should exclude some names from considerdtere are three important cases. First,
our named entity recognizer occasionally marks phrases‘liknited Nations” as proper names. We
can determine that these names do not refer to depictedgbephuse they appear in quite different
linguistic contexts from the names of actual people. Secoaption writers tend to name people who
are actually depicted eatrlier in the caption. Third, captieriters regularly use depiction indicators
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such as “left”, “(R)”, “background”.

Our generative model can be enhanced in a relatively stifaigiard way to take advantage of
these phenomena. In section 4, we encopietired implicitly in the correspondence. We must
now recognizepictured as a random variable, and incorporate it into the model. ®smyields the
following generative model:

To generate a data item:

name, context

1. ChooseN, the number of names, ark, the
number of faces.

prawred 2. Generatél name, contexpairs.
\

. ‘. 3. For each of theseame, contexpairs, generate
face U face p a binary variablepictured conditioned on the
N T F context alone (fronP (picturedjcontext )).

D

4. For eaclmame, contexpair wherepictured =
1, generate a face frof(fjn; ;).

P
5. GenerateF pictured other faces from
P(f).

We follow section 4.1 to obtain an expression for the liketid of a bag conditioned on known cor-
respondence. To obtain a bag of data, we rst draw the numidacesF from a distributionP (F) and
the number of nameld from a distributionP (N ). We then generatd names;, each with a context
Ci, as lID samples oP (n; c). In turn, each name and its context generates a binary Vapatiured,
which determines whether the name will generate a face imtlge, fromP (picturedjcontext ).
For each name for whichictured = 1 (the total number of such hames cannot exdegda facef;
is generated from the conditional dendRyf jn;; ), where are parameters of this distribution which
will need to be estimated. The remaining faces are geneestdidd samples from a distributidR (f ).
We cannot observe which name generated which face, and meade this information with a hidden
variable.

For the moment, assume that we know a correspondence froresntanfiaces for a particular bag.
Notice that this implicitly encodegictured: names that have corresponding faces tmgtired = 1,
and the others haygictured = 0. The correspondence is encoded as a partition of the nkimiaghe
bag into two setdD being the names that generate facesdimkting the names that do not, and a map

, Which takes a name index 2 to a face index ( ). For convenience, we write the set of faces in

the bag a$ . The likelihood of the bag is then
!

Y
L(¢ ¢; ) = P(N)P(F) P(f (yin ; ¢)P(pictured = 1jc ; ()
0 2D 1 !

Y Y
@ P(f )(P(pictured = 0jc ; o)A P(ny;cuy)
2F (D) u2N

We need a model d? (pictured = 1jcontext ;). Once we have a model, we must estimatgthe
parameters of the distribution generating faces from njmmes . (the parameters of the distribution
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generatingpictured from context). All parameters are treated as before (seetid), except now we
also t a model of name contexE (pictured = 1jc ; ().

5.2 Language Representation

We have explored two models fBr(picturedjcontext ). First, a naive Bayes model in which each of
the different context cues is assumed independent givevatieble pictured, and second, a maximum
entropy model which relaxes these independence assuraption

5.2.1 Naive Bayes Model

For a set of context cueL(, fori 2 1;2;::n), our Naive Bayes model assumes that each cue is
independent given the varialghéctured. Using Bayes rule, the probability of being pictured givea t
cuesis

P (Cy;:::Cpjpictured)P (pictured)
P(Cy;::55Ch)

P (Cyjpictured):::P (Cpjpictured)P (pictured)

P(Cy; 5 Ch)

P (pictured) Y P (picturedjC;)P(C;)

P(Cy; 5 Ch) i P (pictured)

_ 1P(picturedjC,):::P (picturedjCn) .

VA P (pictured)" 1 '

P (picturedjCy; Cy;:::Cp) =

Line 1 is Bayes Rule. Line 2 follows from the naive Bayes agsion. Line 3 follows again by Bayes
Rule. TheZ in line 4 is dependent only on the cu€s; :::; C,,. We computeP (picturedjCy;:::; Cp)
andP (notpictured jCq; :::; Cp) ignoring the Z term, and then normalize so tRgpicturedjCy;:::; Cp)
andP (notpicturedjCy;:::; C,) sum tol.

Implementation details: The cues we use are: the part of speech tags of the word imtalgdia
prior to the name and immediately after the name within theioa (modeled jointly); the location of
the name in the caption; and the distances to the nearest™,“(’, “)", “(L)", “(R)", and “(C)" (these
distances are quantized and binned into histograms). At adding a variety of other language model
cues, but found that they did not increase assignment ancura

We use one distribution for each possible context cue, aswhas that context cues are independent
when modeling these distributions (because we lack enoaghtd model them jointly).

5.2.2 Maximum Entropy Model

Maximum entropy models have been used extensively in Hdamguage systems (e.g. [12]). Max-
imum likelihood applied to these models — otherwise knowrt@sditional exponential models —
results in a model that is consistent with a chosen set ofrebdestatistics of the data, but which oth-
erwise maximizes entropy. An attraction of maximum entropydels is that they give a nice way of
modeling a conditional distribution with a large number eafures without having to observe every
combination of those features. They also do not assume émdiemce of features as the Naive Bayes
model does and model conditional distributions directiyea than through the use of Bayes' rule.
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Billy Crystal Anastasia Myskina Robert Redford Beverly Hills Daryl Hannah

Walt Disney

Claudia Schiffer Daniela Hantuchova Denzel Washington

Bob Beauprez

U.S. Open

Cameron Diaz

Albert Hall

Anna Kournikova

Jay Leno Queen Elizabeth

U.S. Embassy

Avril Lavigne

Mark Geragos

Abraham Lincoln

Figure 7: Example clusters found using our basic clustering methed égction 4 for details). Note
that the names of some clusters are not actual people's néengs‘U.S. Open”, “Walt Disney”) and

that there are clusters with multiple errors (“Queen Elizdb”, “Jay Leno”).
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Billy Crystal Anastasia Myskina Robert Redford Beverly Hills Daryl Hannah

Walt Disney

Claudia Schiffer Daniela Hantuchova Denzel Washington

Bob Beauprez

U.S. Open

Cameron Diaz

Albert Hall

Anna Kournikova

Jay Leno Queen Elizabeth

Avril Lavigne

Mark Geragos U.S. Embassy

Figure 8:The clusters of Figure 7 are improved through the use of laggwnderstanding (see section
5 for details). The context of a name within the caption ofimvides clues as to whether the name
is depicted. By analyzing the context of detected namesyqumved clustering gives the more ac-

curate clusters seen above. The named entity recognizesior@lly marks some phrases like “U.S.

Open” and “Albert Hall” as proper names. By analyzing theiomtext within the caption, our system

correctly determined that no faces should be labeled wigsdlphrases. Incorporating language infor-
mation also makes some clusters larger (“Robert Redford"y) aome clusters more accurate (“Queen
Elizabeth”, “Bob Beauprez”).
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Recallpictured is a binary variable. We are modelif®)(pictured = 1jcontext ). We encode
context as a binary vector, where an element of the vectoffithe corresponding context cue is true
and zero if it is not. For théth context cue we de ne two indicator functions

oeon 1 ifx(i)=1 andy = 0;
fikey) = 0 otherwise
1 ifx(i)=1 andy =1;

F2(5Y)= 5 otherwise

Our model is how X
p(picturedjx; )/ exp c;j fj (X; pictured)

i
where ; is the weight of indicator functiop.

Implementation details: We use the same cues as before except instead of binningstaaat
to the nearest ", “.”, “(", )", “(L)", “(R)” and “(C)”, the corresponding cue is true if the the string is
within 3 words of the name. We also de ne a separate cue fdn éamed location corresponding to
the binned location cue used for the Naive Bayes model. feoktximum Entropy model we also add
cues looking for speci ¢ strings (“pictured”, “shown”, “gécted” and “photo”).

5.3 Estimation with EM

EM is computed as described in section 4.2. The differengesdch context model are described in
section 5.3.1 and section 5.4.

5.3.1 Estimating Depiction with Naive Bayes

We update the distribution®, (picturedjC;) andP (pictured), at each iteration of EM process using
maximum likelihood estimates based on soft coumgpicturedjC;) is updated by how often each
context appears describing an assigned name, versus hew thiit context appears describing an
unassigned namé (pictured) is computed using soft counts of how often names are pictueesls
not pictured.

Some indications of a name being pictured learned by thee\Bayes model were: 1. The closer
the name was to the beginning of the caption, the more liketas of being pictured, 2. The “START”
tag directly before the name was a very good indicator of Hraenbeing pictured, 3. Names followed
by different forms of present tense verbs were good inddoatiof being pictured, 4. The name being
followed by “(L)", “(R)” and “(C)” were also somewhat gooddications of picturedness.

5.3.2 Estimating Depiction with Maximum Entropy Models

To nd the maximum likelihoodp(yjx), we use improved iterative scaling, the standard algorittnm
nding maximum entropy distributions, again using soft ot&l Details of this model and algorithm
are described in [12].
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IN Pete Sampras INof the U.S. celebrates his victory over Denma®@¥T Kristian Pless OUT at the
OUT U.S. Open OUT at Flushing Meadows August 30, 2002. Sampras won the mag&y-65 6-4.
REUTERS/Kevin Lamarque

Germany'sN Chancellor Gerhard Schroeder IN, left, in discussion with Francel®\ President Jacques
Chirac IN on the second day of the EU summit at the European Councilgueaters in Brussels, Friday
Oct. 25, 2002. EU leaders are to close a deal Friday on nadiz2ntry talks with 10 candidate cou
tries after a surprise breakthrough agreement on Thursdayden France and Germany regarding farm
spending.(AP Photo/European Commission/HO)

‘The Right Stuff' cast membertN Pamela Reed IN (L) poses with fellow cast membéN Veronica
Cartwright IN at the 20th anniversary of the Im in Hollywood, June 9, 200Be women played wives of
astronauts in the Im about early United States test piloid the space program. The Im directed QJT
Philip Kaufman OUT , is celebrating its 20th anniversary and is being releaseld\WD. REUTERS/Fred
Prouser

Kraft Foods Inc., the largest U.S. food company, on July 3€aid it would take steps, like cappin
portion sizes and providing more nutrition information, isand other companies face growing concern
and even lawsuits due to rising obesity rates. In May of tieiarySan Francisco attorn@UT Stephen
Joseph OUT, shown above, sought to ban Oreo cookies in California —taisati was withdrawn less than
two weeks later. Photo by Tim Wimborne/Reuters REUTERSANimborne

«Q

Figure 9: Our new procedure gives us not only better clustering restiltit also a natural language
classi er which can be tested separatelftbove: a few captions where detected names have been
labeled with IN (pictured) and OUT (not pictured) using oaafned language model. Our language
model has learned which contexts have high probability f&frreng to pictured individuals and which
contexts have low probabilities. We can use this model ttuat@athe context of each new detected
name and label it as IN or OUT. We observe an 85% accuracy ddliladp who is portrayed in a
picture using only our language model. The top 3 labelingsall correct. The last incorrectly labels
“Stephen Joseph” as not pictured when in fact he is the sulgethe picture. Some contexts that are
often incorrectly labeled are those where the name appeaas the end of the caption (usually a cue
that the individual named is not pictured). Some cues wedcadd that should improve the accuracy
of our language model are the nearness of words like “showpittured”, or “photographed”.

5.4 Estimation with Maximal Assignment

Estimation with maximal assignment is as before. Howeweth Inaive Bayes and maximum entropy
language models no longer use soft counts. In effect, mddssgnment chooses a single correspon-
dence, and so speci es which names are depicted. The comalitanguage models and appearance
models are then learned with supervised data (it is knowrmevyery context whether it is depicted or
not and also which face has been assigned to each name) usimgam likelihood.

6 Results

Because this is an unsupervised task, it is not meaningftivide our data into training and test sets.
Instead, to evaluate our clusterings, we create an evafuatt consisting of 1000 randomly chosen
faces from our data set. We hand label these evaluation snaigle their correct names (labeling with
'NULL' if the face was not named in the caption or if the namedity recognizer failed to detect the
name in the caption). To evaluate a clustering, we can cooyreiethod to associate a single name
with each face (we use the name given by the maximum liketihemorespondence once the parameters
have been estimated), and then determine how many faces avétiuation set are correctly labeled by
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Actress Jennifer Lopez was nominated for a
Golden Raspberry or Razzie award as "the
year's worst actress" for "Enough" and "Maid
in Manhattan" on February 10, 2003. Lopez is
shown at the premiere of "Maid in Manhattan"
on Dec. 8 and is joined by Madonna, Britney
Spears, Winona Ryder and Angelina Jolie for
the dubious honor. (Jeff Christensen/Reuters)

Figure 10:We have created a web interface for organizing and browsewsphotographs according
to individual. Our data set consists of 30,281 faces depgctipproximately 3,000 different individuals.
Here we show a screen shot of our face dictiontmy, one cluster from that face dictionary (Actress
Jennifer Lopezpottom left and one of the indexed pictures with corresponding cagioom right .
This face dictionary allows a user to search for photographan individual as well as giving access
to the original news photographs and captions featuring thdividual. It also provides a hew way of
organizing the news, according to the individuals presarits photos.
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Model EM MM
Baseline PCA Appearance Model, No Lang Model| 37 :04% | 53 :04%
kPCA+LDA Appearance Model, No Lang Model | 56 :05% | 67 :03%
kPCA+LDA Appearance Model + N.B. Lang Model| 72 :04% | 77 :04%
kPCA+LDA Appearance Model + Max Ent Lang Mod - 78 :04%

o

Table 1. Above: To form an evaluation set, we randomly selected 1000 faces Gur data set
and hand labeled them with their correct names. Here we shbat percentage of those faces are
correctly labeled by each of our methods (clustering withe@language model, clustering with our
Naive Bayes language model and clustering with our maximotnogy language model) as well as
for a baseline PCA appearance model. Standard deviatioal@itated by dividing the test set into 10
subsets containing 100 faces each and calculating the tieriaver the accuracies for these subsets.
Incorporating a language model improves our labeling aemyr signi cantly. Standard statistical
knowledge says that EM should perform better than choosiagraximal assignment at each step.
However, we have found that using the maximal assignmerksiagtter than EM for both the basic
clustering and clustering with a language model. One reabncould be true is that EM is averaging
faces into the mean that do not belong.

that name. This is a stern test; a less demanding alterriatieepredict a ranked list of names for a
given face, but this is harder to evaluate.

kKPCA+LDA is a reasonable model: We test our appearance model against a commonly used
baseline face representation of principal componentsyaisal In table 1 we see that the appearance
only clustering using kPCA followed by LDA performs betteanh the PCA appearance model. kPCA
plus LDA labels 67% of the faces correctly, while PCA labed8of the faces correctly.

Maximal assignment performs better than EM: In table 1, we see that the basic clustering cor-
rectly labels 56% of the test images correctly when estichatgh EM (as in section 4.2), and 67%
of the test images correctly when estimated with maximagassent (as in section 4.3). For context
understanding clustering, 72% of the faces are labele@cttyrwhen estimated with EM (section 5.3),
where as 77% of the faces are labeled correctly when estilmédte maximal assignment (section 5.4).
This clearly indicates that the maximal assignment promegerforms better than EM for our label-
ing task. We speculate that the Gaussian model of face &satonditioned on a hame places too
much weight on faces that are far from the mean. One otheilpesxplanation for this phenomenon
is that MM is training the model under the exact conditionsvidnich it is tested on (to get the top
correspondence correct). It would be interesting to meathg average log probability of the correct
correspondence on the evaluation set, which is what EM ageisn

Language cues are helpful:Language cues are helpful, because they can rule out somia-bad
belings. Using the same test set, we see that context uaddnsg clustering (section 5) labels 77%
of the test faces correctly using a naive Bayes model and #8#edaces correctly using a maximum
entropy model (table 1).

Vision reinforces language:One consequence of our context understanding clusteritigothés a
pure natural language understanding module, which cawlelther faces are depicted in captions from
context alone (i.e. one looksR{pictured = 1jc)). We expect that, if context understanding clustering
works, this module should be reasonably accurate. The radduindeed, accurate. We hand labeled
the names in 430 randomly selected captions with “IN” if tlaene was depicted in the corresponding
picture and “OUT” if it was not. On this evaluation set (wititcany knowledge of the associated

23



Classi er labels correct| IN corr. | OUT corr.
Baseline 67% 100% 0%
EM Labeling with N.B. Language Model 76% 95% 56%
MM Labeling with N.B. Language Model 84% 87% 76%
MM Labeling with max ent Language Model 86% 91% 75%

Table 2: Above: To form an evaluation set for text labeling, we randomly €480 captions from
our data set and hand labeled them with IN/OUT according tetiver that name was depicted in
the corresponding picture. To evaluate how well our natl@alguage module performed on labeling
depiction we look at how our test set names were labeled. elaborrect” refers to the percentage
of names that were correctly labeled, “IN correct” refers tioe percentage of IN names that were
correctly labeled, “OUT correct” refers to the percentagé @UT names that were correctly labeled.
The baseline gure gives the accuracy of labeling all namesiid. Incorporating both our Naive
Bayes and Maximum Entropy language models improve labslgng cantly. As with the faces, the
maximum likelihood procedure performs better than EM. Nathat are most often mislabeled are
those that appear near the end of the caption or in contexsrtiost often denote people who are not
pictured.

images), the Naive Bayes model labeled 84% of the namesctlygrrehile the Maximum Entropy
model labeled 86% of the names correctly (table 2). Basethesettwo tests, we conclude that these
models perform approximately equivalently on our data $égure 9 shows some example captions
labeled using the learned Maximum Entropy Context modehil8rly to the face classi cation task,
the two models perform with approximately the same accyridough the Maximum Entropy model
again has a slight advantage over the Naive Bayes model.

Spatial context: One could reasonably expect that caption features likd){lmight directly sug-
gest a correspondence, rather than just indicate depidtiowever, incorporating this information into
our context understanding model was not particularly helpf particular, we we built a maximum
entropy model of face context given name cont@&g¢dontextsace jcontextname ). The feature used for
face context was location in the image, and for name conitextdatures were “(L)”, “(R)”, “left” and
“right”. The maximum entropy model correctly learned thét)” and “left” were good indicators of
the face image being on the left side of the image, while “@)d “right” were good indicators of the
face image being on the right side of the image. Howeverrparating this model into our clustering
scheme had little effect on the correctness of our labelfogly increasing the accuracy by 0.3%). The
reasons this might be true are: 1. Only about 10% of all theasaexhibited these context cues, 2.
The names with these context cues are in general alreadgotigrassigned by our system, and 3. The
signal present in linking for example “left” and the imagergeon the left side of the image is fairly
noisy, making their connection tentative.

Scale: The most natural comparison with our work is that of Yat@l. ([76], and described brie y
above). This work applies various multiple-instance lgggmmethods to learn the correct association
of name to face for bags consisting of a single face and 4. £sam average. There are 234 bags where
the correct name appears in the bag, and 242 where it doematipds label between 44% and 63%
of test images correctly, depending on the method. Our ndeshows appreciable improvements. We
conjecture that there are two places in which operating watly large scale data sets is helpful. First,
kPCA estimates seem to give better representations whesimages are used, perhaps because high-
variance directions are more stably identi ed. Second, eraata appears to simplify correspondence
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Donald Rumsteld pritney Spears Jonn soiton

Angelina Jolie Woody Allen Marilyn
Monroe

) Sylvester Stallon¢
M. Ali

Hans Blix Strom Thurmond Chelsea

Glinton Secretary of State Colin Powell

Sheryl Crow

Leonard
Nemoy

Justin Timberlake
Venus Williams

James Bond
Sophia Loren

Figure 11:The gure shows a representative set of clusters, illugtgaa series of important properties
of both the data set and the method. 1: Some faces are vemyefieqnd appear in many different
expressions and poses, with a rich range of illuminationg. (elusters labele&ecretary of State Colin
Powell or Donald Rumsfelld 2: Some faces are rare, or appear in either repeated copiesme or
two pictures or only slightly different pictures (e.g. drrslabeledChelsea Clintoror Sophia Lorei

3: Some faces are not, in fact, photographs @Ali). 4: The association between proper names and
face is still somewhat noisy, for examgpleonard Nemoywhich shows a name associated with the
wrong face, while other clusters contain mislabeled fa@eg. Donald Rumsfeldr Angelina Jolig.

5: Occasionally faces are incorrectly detected by the fagtector Strom Thurmonyl 6: some names
are genuinely ambiguousdmes Bongdwo different faces naturally associated with the name (it

is an actor who played James Bond, the second an actor who wiaracter in a James Bond Im) .
7: Some faces appear in black in whitdgrilyn Monrog while most are in color. 8: Our clustering
is quite resilient in the presence of spectacldarts Blix Woody Allen), perhaps wigsJohn Bolton
and mustachesl¢hn Bolton.
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problems, because the pool of relatively easily labeledyisawill grow. Such images might consist of
faces that happen to have only one possible label, or of grotifaces where there is little doubt about
the labeling (for example, two faces which are very différexs another example, one familiar face
and its name together with an unfamiliar face and its name) cvjecture that the absolute size of the
“easy” set is an important parameter, because a large seisgfimages will make other images easy
to label. For example, an image that contains two unfamiiaes and two unfamiliar names could
be much easier to label if, in another image, one of thesesfappeared with a familiar face. If this
conjecture is true, the problem simpli es as one operatdh larger data sets.

6.1 Recognition Baselines

We have performed several baseline recognition tests tamnedhe dif culty of the face recognition
data set produced by our system. To do this, we select a gtauthdsubset of our recti ed face images
consisting of 3,076 faces (241 individuals with 5 or moreefamages per individual). The cluster of
faces for each individual were used and hand cleaned to reeweneously labeled faces. Half of the
individuals were used for training, and half for testing.cfleommon baselines for face recognition data
sets are PCA and PCA followed by LDA. On the test portion of #&t, using the rst 100 basis vectors
found by PCA on the cropped face region with a 1-Nearest Ngigklassi er gives recognition rates:
of 9.4% 1.1% using a gallery set of one face per individual, 12.499.6% using a gallery of two
faces per individual, and 15.4% 1.1% using a gallery set of three faces per individual.

Using the rst 50 basis vectors of LDA computed on the PCA wextincreases the accuracy to:
17% 2.4% for a gallery of one face per individual, 23% 1.9% for a gallery of two faces per
individual and 27.4% 2.6% for a gallery of 3 faces per individual. These numbeesaarite a bit
lower than the 80-90% baseline recognition rates quotednfast data sets, suggesting that our face
images are in fact quite challenging and that they will be efulsdata set for training future face
recognition systems.

7 Conclusion

We have automatically produced a very large and realistie tfata set consisting of 30,281 faces with
roughly 3,000 different individuals from news photograptith associated captions. This data set can
be used for further exploration of face recognition alduoris. Using simple models for images and
text, we are able to create a fairly good assignment of namfzges in our data set. By incorporating
contextual information, this labeling is substantiallypraved, demonstrating that words and pictures
can be used in tandem to produce results that are better #iragy either medium alone.

Another product of our system is a web interface that orgssthe news in a novel way, according
to individuals present in news photographs. Users are alidedwse the news according to individual
(Figure 5.4), bring up multiple photographs of a person aiegv\the original news photographs and
associated captions featuring that person.

We can use the language and appearance models learned bystam go label novel images or
text in isolation. By learning these models in concert, wegdtdhe amount of information available
from either the images and text alone. This increases tHerpgance power of our learned models.
We have conclusively shown that by incorporating languad@rination we can improve a vision task,
namely automatic labeling of faces in images.
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